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General Formulas for the Method
of Lines in Cylindrical Coordinates

Reinhold Pregla

Abstract— General formulas are given for the method of lines in
cylindrical coordinates and angular discretization. They describe the
transfer of the fields from one boundary of a cylindrical layer to another
in a multilayered structure. With these formulas, programming can be
accomplished without performing additional analysis.

1. INTRODUCTION

The method of lines, as a special FDM, enables analytic calculation
in a specific direction. In this direction, the structures to be analysed
can consist of multiple, stacked layers without causing an increase
in the difficulty or complexity of the analysis. In general, field com-
ponents from the boundary surface of one layer can be transformed
to that of another layer. The basic theory and important formulas for
this procedure are explained in [1]. These transformation formulas
are easily suited to the analysis of waveguides such as those used
in integrated optics, [2], [3] and diffused waveguides with up to 80
layers or more can be modeled using this method.

Of late, cylindrical structures have also become more meaningful.
The basic principle of using the method of lines to solve wave
equations in cylindrical coordinates is given in [4]. A treatment of
microstrip lines of arbitrary cross section, accomplished with the
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(@) (b)

Fig. 1. Cross sections of cylindrical multilayer structures with discretization
lines using ABC’s (a) and PBC’c (b). (a) General cross section, (b) sectorial
cross section,

help of cylindrical functions, appears in [5], and in [6] the analysis
of antennas composed of microstrip and microslot resonators using
cylindrical bodies is explained. Dipoles are analyzed in [7] using
the methodology described in [1]. A generalized description of the
transformation of fields from one cylindrical boundary surface to
another, however, has not been completed. The purpose of this
document is to provide such a description. Having such general
formulas computer programming is made very easy.

II. METHODS OF ANALYSIS

The general method of analysis, described below, applies to
structures such as those diagrammed in Fig. 1. The number of layers
in these structures is arbitrary. An arbitrary number of metallic strips
or cylinders can be placed between the layers of the structure, and
the layers can begin at p = 0 and extend to infinity. Structures with
a p-dependent permittivity (graded index fibefs) can be successfully
modeled by a sufficient number of distinct layers. The goal of this
document is thus the formulation of a general transfer for fields
between two boundary layers, i.e. from a surface A to a surface B in
the ith layer. The procedure for this is analogous to those in [1] and
[8], [9], but in cylindrical coordinates and with angular discretization.
The permittivities in the layers can also be complex.

The whole field may be obtained from the components in the z
direction, e, and k.. These are the only Cartesian components in the
cylindrical coordinate system, and for these components the following
wave equations are valid

= 5 F,
V?Fz—i_'a?—'_sTFZ:O ¢}
where F, = E, or F, = H, = NoH:,Z = koz,p = kop and
=2 18 /(_0 1 8°
= | p= - 2
Ve ﬁaﬁ(p3ﬁ>+52 32 @

is the Laplace operator in cylindrical coordinates.k, and 7, are the
wave number and wave impedance of free space, respectively. In the
following we assume propagation in the z direction. Therefore we
write —j+/2re for 8/0Z. er. is the effective dielectric constant.

For the solution of the wave (1) and for the determination of the
field components, a discretization in ¢ direction is performed [4].
As stated there, in principle, the analysis is the same as in Cartesian
coordinates. Therefore, all that is known for the discretization in carte-
sian coordinates can be used here for the ¢ direction. In Fig. 1 two
different possibilities are shown. To save memory and computational
effort, absorbing boundary conditions (ABC) are suitable (a). If the
whole cross section is of interest, periodic boundary conditions (PBC)
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have to be used, which, in the most general case, are described in [1].
In the case of symmetry, or if the structure is only a part of the whole
circle [4], Dirichlet and Neumann boundary conditions are suitable.
For the discretization the following descriptions and definitions are
used

E. - F, 3)

he 8(,59 : 5 D.E. “)

B 6(;5; — DD, B s)

6. =T,'D.T. (6)

T YDy D)T. = -A2. 0

The discretization for H . is dual. All subscripts e have to be changed
in h and vice versa. h, is the (angular) discretization distance in
the ¢ direction. D, and D), are the difference operators for the first
order differential quotients. We obtain in the case of Neumann and/or
Dirichlet conditions ([1], p. 386)

D,=-D. T'=T. T,'=T, (8)
in the case of periodic boundary conditions ([1]. p. 443)

D,=-D T,'=T! T,'=T; )
for the case of ABC's [13] [6]

D.=-pD!
(10)

D.=D,. D,=-D'" or D,=D,.

D corresponds to D),. We get this operator from D, by setting the
parameters ¢ = 1 and b = ¢ = 0 [6] Furthermore, we have

Bebn ==Xy Bnbe = -\l (1)
N =hZ2A2 b =h;t/Ee6 = /o500, (12)
The discretization of the wave equation results in
d dF~ 2 2 .55
t— == 7 — L=
dt( dt)+( A)F.=0 (13)

with ¢ = \/Z27. X has the subscript e(h) for F. = E.(H.).

The bars above the field quantities indicate that the quantities are
transformed according to

E.=T.E. H,=T,H.. (14)
The general solution for the kth component is [4]
F., = J5 (A4 + Yy, (t)By. (15)

In the following we use » = X instead of X. The boldface subscript »,
on both the cylinder functions C and functions constructed from them,
means that, e.g., Cp is a diagonal matrix and consists of the elements
Cu, - The discretized transverse field components are obtained from
E. and H. as follows

ﬁ—Egp . —'$e Dt!h Ez
&l {ﬁF‘J =J [—er,Je —&, | |H- (e
- ﬁEp o \/EreIeDt 6h EZ (17)
“pH,| T e, JEiInD: | |H.

where €4 = £, — £re and D; = #(d/dt). The quantities E, H,
are transformed with T'. and H ,, E, with T'j,, respectively. I is the
identity matrix.
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C. Fields on the Interfaces A and B
From the general solution in (15) we have for the interfaces A and
B of a layer in matrix form
E:A — Jl/(tA) }fll(tA) [A ] (18)
F.p Julte) Yultm)|'B
After differentiating (18) with respect to the argument and intro-
ducing the vector of the coefficients from (18), we obtain
_ 2
aal-w s, V)R
= =y 9 il
dt F:B — _I qu F:B
T
The hat (") above a quantity here and in the following is used to

indicate that the quantity is a blocdiagonal matrix constructed from
two matrices without a hat, e.g.,

19)

pv = Diag(py, pw). (20)

Here, as in (19), we have used the cross products according to the
definitions 9.1.32 in {11] which we normalize

Ty =tarvy Qp =1tBqu 3Sv =tatgsy. 20
Analogous to (26) in [1], instead of (16) we can now write
- I:ﬁABEv’AB} _ { b Fch ] {—jE:AB} 22)
“PapHesn cole —bp | |—JH:aB
—FzAB = [FiA. FiB]i (23)
— 7= . et 4
PapFean =[0sFpa:pF o5 @4
where the I' and I'"' matrices are given by
2 2
R —1 |y T
I =py 9 ™ ' =319 7T 25)
——I1 g -I 7y
™ ™

The inversion of the matrix I" was obtained with 9.1.34 in [11].
Therefore, (22) takes the following form

jF:AB _ €dF;1 F;lée ﬁABEAPAB
- T = 2 e (26)
PapHoan -r-'6, T JE. 4B
FE = [’YEl ~aE:|
ap Y,
_ _ — . _—1v2
,YEl =£q 1(_‘47‘TVEPI/: + Eqreqye sy:Af)
YEs :551
2 _ — 12
ap = ey erpy, + reFy X (27)

Y, is obtained from v, by replacing 7y, by g, and vice versa.
For this formulation we have used the relations é.u. = up6. and
Snun = ucby [1]. where, u. 5 is one of the diagonal matrices, e.g.,
FV~pV’qﬂ’§”'

The last step in our derivation is the rewriting of (26). With the
following definitions

Hap=[HosppapHons (28)
Esb=[papBons iBns (29)
we obtain

FA _ylA y2 } [ EA ]
- =" 7 =5 30
[HB} L% ¥is||-Fs G0
g = | q”hggiée] 31)

' ~619y, Sy, TE,

[ 20 ——1 =15

_ ;“dth ;I.—S”h e
V2= 2. __, (32)

_—;6hs,,h agp
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¥, 5 is obtained from ¥, , by replacing vz, by —Yg, and gy, by
—7y,. With Hy = V" "VE, and Hs = YV Eg, the following
recursion formula is obtained

k—1
Y( )—yg(lhA_Y( )

)7, - Uin (33)

for the transfer of the admittance in the outward direction. With

O = —?El“l)EB and H4 = —l_’,(gl)EA, the transfer from an
outer to an inner boundary is obtained
n o _ -1 _
Y =%@s Y )7~ WA (34)

An equation analogous to (26) in [1] reads

Es]l _[Vi Z1[Ea
) =¥ v)lE]
Vi=9,'7., V2= 51552—1
Z=-5;" Y =9, %55, Ta- (36)

Equation (35) is a generalized transfer equation. The transfer equation
for a number of layers is obtained by multiplication of the matrices
for the single layers.

The usage of the derived formulas is analogous to that for Cartesian
coordinates [1], e.g., the system reduction in the spatial domain
because of the metallic conductors (strips) is identical. Formulas for
the power transfer necessary for the impedances are given in the
Appendix.

III. EXTENSIONS

The summarized procedure for analysis can easily be extended for
finite metallization thickness, two-dimensional discretization, lossy
material, or higher order difference operator approximation. As shown
in Section II, the discretization in azimuthal direction does not
differ from the discretization in Cartesian coordinates. Therefore
all what is known for the nonequidistant discretization in Cartesian
coordinates [16] can be used here in the same way. The higher
order approximation derived in [15] can be used to improve the
convergence behavior. To take into account the finite metallization
thickness, the formalism given in [1] and [14] can be directly used. It
should be remembered that we have two different matrices g, , and
Y, p instead of a single matrix ¥,.

If the structure is not homogeneous in the z direction, then a
discretization for this coordinate is also necessary. The z-coordinate,
however, is a Cartesian coordinate, and therefore the discretization
in this direction is completely analogous to the procedures given in
[1], [12], and [6].

1IV. ConcCLUSION

With the general formulas presented here, the analysis of multilay-
ered cylindrical structures can be performed using the MoL. Because
the discretization procedure in principle was verified in [4] no special
numerical results are given.

APPENDIX
CALCULATION OF THE POWER TRANSFER
FOR THE CHARACTERISTIC IMPEDANCE

In waveguides allowing hybrid waves propagation, characteristic
impedances are defined by means of the power transfer P [1]. The
power transfer P is determined as the integral of the Poynting
vector over the waveguide cross section F. For propagation in the

z direction,

holp dy dp} (A1)
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The power transfer must be calculated separately for each layer
of the circular structure and then summed over all layers. For the
layer between pa and pp in Fig. 1 we obtain using the discretized
fields (approximating the integral with respect to ¢ by means of the
rectangular or trapezoidal rule)
h ‘s £33 *1
Py = Re{ R /t tH,E, -tH,'E,) dt}. (A.2)
A

Instead of using the field components in the spatial domain, the field
components in the transformed domain can be used to an advantage,
because, e.g.,

H!E,=H.T.E,=(T:'0,)"E, =0, E,. (A3)
With
& | Yo(ts) —Yu(ta)][Fa
F= Ll _
[YV(t)] Py { Ju(te) Ju(ta) ||FB (A4)

where T = F, or I = H,, and with the solutions of the following
integrals

BT tJE(E) tJu (£)Yu(t) ay by
S dt = A5
/iA [tJy(t)Yy(t) Y2 (H) } {b,, c,,} (A4.3)
we obtain the final result for the first part of (A.2)
ts ol E
tH E,dt = —*"A] [-"B 9> ] [—”A] A6
/tA e [HAPB 9s 94 ]|FoB (4.0)

with (C = A or B)

9o =lavYs (te) + cwdpltc) — by Ju(tc)Yu(te)lpy®
9o = (—aw Yy (ta)Yu(tn) — coJu(ta)Ju(ts))py”

+ by (Ju(ta)Yu(tn) + Ju(ts)Yu(ta))py>. (A7)

The subscript ¥ must be marked with a subscript e. A corresponding
result is also obtained for the second term in (A.2), but » must then
be marked with a subscript h.
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Magnetic Frequency-Tunable Millimeter-Wave
Filter Design Using Metallic Thin Films

Hoton How, Ta-Ming Fang, and Carmine Vittoria

Abstract— Frequency tunable millimeter wave filters are considered
to be fabricated using metallic ferromagnetic thin films. Whereas con-
ventional filters which include insulating ferrite materials utilize the
phenomenon of ferromagnetic resonance (FMR), our design incorporates
the phenomenon of ferromagnetic anti-resonance (FMAR). Our calcu-
lations indicate that in comparing the characteristics of the two types
of filters the filter utilizing magnetic metal films is superior in terms of
insertion loss and integrability with other planar millimeter wave devices.
Design of band-pass filter can be realized in which the transmission
frequency occurs at FMAR frequency with a frequency bandwidth equal
to the FMAR linewidth.

I. INTRODUCTION

In the past microwave/millimeter wave filters were inevitably
designed in terms of varying the capacitive or inductive loading of the
resonators. For the former case varactors are commonly used in which
the frequency tuning range of the filter can be only a few percent of
the transmission frequency [1]. For the latter case ferrite insulators
are used which are usually in the form of polished spheres of single
crystal yttrium iron garnet (YIG). The ferrite spheres are biased
by a magnetic field and the transmission frequency is designed at
ferromagnetic resonance (FMR) [2]. Both designs involving varactors
and ferrite insulators are limited to relatively low-power applications.

We consider in this paper for the first time a new design in which
metallic magnetic films are used instead of ferrites in order to im-
prove the band-pass characteristics. Whereas conventional insulating
ferrite materials utilize the phemomenon of ferromagnetic resonance
(FMR), the use of magnetic metal films utilizes the phenomenon of
ferromagnetic anti-resonance (FMAR). Normally metals more than
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a few p thick are opaque to microwave radiation. However, it was
predicted by Kaganov [3] (1959) and discovered by Heinrich and
Meshcheryakov [4] (1969) that a ferromagnetic metal becomes rela-
tively transparent to microwave radiation over a limit range of applied
magnetic fields near the field strength corresponding to FMAR. At
FMAR the effective permeability of the metal film is very small
and, hence. the resultant microwave skin depth becomes anomalously
large. Additional work on this subject may be found in [5]-[7].

Our filter design involves the fabrication of a composite microstrip
line in which a thin magnetic metal film is inserted in the substrate
layer of the microstrip line, which is connected to and lies parallel
to the ground plane. The characteristic impedance of the microstrip
line in the absence of the metal film is 50 Q. A dc magnetic field
is applied normal to the film plane. When the magnetic film is
biased away from FMAR the magnetic metal film interferes strongly
with wave propagation. The characteristic impedance of the line
appears to be much smaller than 50 2. The signal is reflected when
biased off-FMAR due to impedance mismatch. However, for biasing
field at FMAR the skin depth within the magnetic metal becomes
substantially greater than the film thickness. Consequently, at FMAR
the impedance of the line changes to 50 €2 which matches the
input signal feeder line. The band-pass transmission bandwidth is
consequently the FMAR linewidth [5]-[7]. We have calculated the
transmission properties of the filter based on the use of permalloy thin
films. The calculations show the following characteristics: insertion
loss is less than 0.2 dB. isolation larger than 10 dB, and frequency
tunability extends from 30 to 120 GHz.

FMAR occurs for frequencies somewhat above FMR. At FMAR
the rf magnetic moment, m, is out-of-phase with the driving field,
h, so that [S5]-[7]

b=h+4mm =0. ()]
For this condition the dynamic permeability, p, is very small (limited
by the value of magnetic relaxation) and the effective skin depth is

large, being limited only by the magnetic damping. The condition of
(1) combined with the magnetic equation of motion

M=~MxH (2)
where
H=Ho+h
readily leads to the condition for FMAR
w/v = Bo = Hiy + 47 M, 3)

where H,, is the static internal magnetic field, v the gyromagnetic
ratio, and 47 M, the saturation magnetization.

At FMAR the metal film is characterized by a small permeability
value which results in very large skin depth when the metal film is
exposed to rf excitations [S]-[7]. Therefore, the metal film appears to
be transparent to the microwave millimeter wave transmission when
it is biased at FMAR. The frequency bandwidth of transmission is
roughly equal to the linewidth at FMAR [3]

AHpmar = 0.3(47r]vls)[(6s/d)(AH/1MS)3/2]1/2 @)
where d is the thickness of the metal film, 4, the classical skin depth
8§ = c/(2mow)/?

c the speed of light in vacuum, ¢ the conductivity of the metal film,
and AH is the linewidth at FMR given by

AH = 2(Ay)(w/vM;). (5)

Here A denotes the Landau-Lifshitz damping parameter [6].
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