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General Formulas for the Method

of Lines in Cylindrical Coordinates

Reinhold Pregla

Absfract— Generat formulas are given for the method of lines in

cylindrical coordinates and angular dkcretization. They describe the

transfer of the fields from one bonndary of a cylindrical layer to another
in a multilayered structure. With these formulas, programming can be

accomplished without performing additional analysis.

I. INTRODUCTION

The method of lines, as a special FDM, enables analytic calculation

in a specific direction. In this direction, the structures to be analysed

can consist of multiple, stacked layers without causing an increase

in the difficulty or complexity of the analysis. In general, field com-

ponents from the boundary surface of one layer can be transformed

to that of another layer. The basic theory and important formulas for

this procedure are explained in [1]. These transformation formulas

are easily suited to the analysis of waveguides such as those used

in integrated optics, [2], [3] and diffused waveguides with up to 80

layers or more can be modeled using this method.

Of late, cylindrical structures have also become more meaningful.

The basic principle of using the method of lines to solve wave

equations in cylindrical coordinates is given in [4], A treatment of

microstrip lines of arbitrary cross section, accomplished with the
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(a) (b)

Fig. 1. Cross sections of cylindrical multilayer structures with discretiz,ation
lines using ABC’s (a) and PBC’C (b). (a) General cross section, (b) sectorial
cross section.

help of cylindrical functions, appears in [5], and in [6] the analysis

of antennas composed of micro strip and micro slot resonators using

cylindrical bodies is explained. Dipoles are analyzed in [7] using

tbe methodology described in [1]. A generalized description o F the

transformation of fields from one cylindrical boundary surface to

another, however, has not been completed. The purpose of this

document is to provide such a description. Having such gelmeral

formulas computer programming is made very easy.

II. METHODS OF ANALYSIS

The general method of analysis, described below, applies to

structures such as those diagrammedl in Fig. 1. The number of layers

in these structures is arbitrary. An arbitrary number of metallic strips

or cylinders can be placed between the layers of the structure, and

the layers can begin at p = O and extend to infinity. Structures with

a ,o-dependent permittivity (graded index fibers) can be successfully

modeled by a sufficient number of distinct layers. The goal of this

document is thus the formulation of a general transfer for fields

between two boundary layers, i.e. from a surface A to a surface B in

the ith layer. The procedure for this is analogous to those in [1]1 and

[8], [9], but in cylindrical coordinates and with angular discretiza.tion.

The permittivities in the layers can also be complex.

The whole field may be obtained from the components in the .z

direction, e. and hz. These are the only Cartesian components in the

cylindrical coordinate system, and for these components the following

wave equations are valid

where F. = E. or F= = Hz = qoH.,z = k~.z,p = k,p and

(1)

(2)

is the Laplace operator in cylindrical coordinates.k~ and q. are the

wave number and wave impedance of free space, respectively. In the

following we assume propagation in the z direction. Therefore we

write –j& for ~/&. e~~ is the effective dielectric constant.

For the solution of the wave (1) and for the determination of the

field components, a discretization in ~ direction is performed [41.
As stated there, in principle, the analysis is the same as in Cartesian

coordinates. Therefore, all that is known for the discretization in carte-

sian coordinates can be used here for the p direction. In Fig. 1 two

different possibilities are shown. To save memory and computational

effort, absorbing boundary conditions (ABC) are suitable (a). If the

whole cross section is of interest, periodic boundary conditions (PBC)

0018–9480/95$04.00 01995 IEEE
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have to be used, which, in the most general case, are described in [1].

In the case of symmetry, or if the structure is only a part of the whole

circle [4], Dirichlet and Neumann boundary conditions are suitable.

For the discretization the following descriptions and definitions are

used

E, ~ E, (3)

(4)

(5)

The discretization for If, is dual. All subscripts e have to be changed

in h and vice versa. hw is the (angular) discretization distance in

the p direction. D, and Dh are the difference operators for the first

order differential quotients. We obtain in the case of Neumann and/or

Dirichlet conditions ([1], p. 386)

in the case of periodic boundary conditions ([1]. p. 443)

for the case of ABC’s [13] [6]

D, =Da. DFL = –Dt Or Dk =Da. D. = –Dt

(10]

D corresponds to D.. We get this operator from Da by setting the

parameters a = 1 and b = c = O [6] Furthermore, we have

The discretization of the wave equation results in

d

(–)

dF,

‘% t dt
+ (t21 – X2)FZ = o (13)

with t = &p. X2 has the subscript e(h) for F, = E=(&= ).

The bars above the field quantities indicate that the quantities are

transformed according to

The general solution for the kth component is [4]

F,k = Jxk(t)Ak + I;k(f)flk. (15)

In the following we use v = A instead of ~. The boldface subscript v,

on both the cylinder functions C and functions constructed from them,

means that, e.g., Cv is a diagonal matrix and consists of the elements

Cuk. The discretized transverse field components are obtained from

Ez and H. as follows

(16)

where Ed = s. — s,C and Dt = t(djdt). The quantities llP, 11~

are transformed with T. and HP, Efl with ?’k, respectively. I is the

identity matrix.

C. Fields on the Inte~aces A and B

From the general solution in (15) we have for the interfaces .4 and

B of a layer in matrix form

(18)

After differentiating (18) with respect to the argument and intro-

ducing the vector of the coefficients from (18), we obtain

The hat (”) above a quantity here and in the following is used to

indicate that the quantity is a blocdiagonal matrix constructed from

two matrices without a hat, e.g.,

fiv = Diag(pv, pv). (20)

Here, as in (19), we have used the cross products according to the

definitions 9.1.32 in [11] which we normalize

Fv = tA?l/ ~v = tl?qv ~V = t.4tBSV. (21)

Analogous to (26) in [1], instead of ( 16) we can now write

F..4B = [F:.4. F:B]f (23)

i14i3~pAB = [F.4~i.4s PBZBlf (24)

where the r and r– J matrices are given by

r=p;l [k::1‘-’=’;’&‘3 ’25)
The inversion of the matrix r was obtained with 9.1.34 in [11].

Therefore, (22) takes the following form

[#%%] = [~j;;;} ‘;~’

““k a

(26)

(27)

7EZ is obtained from VEI by replacing TV. by qve and vice versa.

For this formulation we have used the relations 6CU, = u), 6. and

6kuk = u,~fi [1]. where, ?&)f, iS one Of the diagonal matiiCeS, e.g.,

Fv>Pv, qv>%.

The last step in our derivation is the rewriting of (26). With the

following definitions

‘A,B = [jm~.4,B>pA,BmiA,B]t (28)

we obtain
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ijl~ is obtained fromjj~ by replacing 7EI by –7E, andijvk by

‘(k–l)~~ and~~ =~~k)~B, the following‘~Vk. With R.4 = Yt

recursion formula is obtained

Y\k) =7j2(g1A-Yt
–(k-u-l--, _ ~lB

(33)

for the transfer of the admittance in the outward direction. With
‘(~–1)~~ and EA = –~}t)~~, the tianSfer frOm anHB = –Yt

outer to an inner boundary is obtained

An equation

Yy = ij2(jj1B – Y*
–(~-l) ~-lg2 _ ~lA. (34)

analogous to (26) in [1] reads

(35)

Equation (35) is a generalized transfer equation. The transfer equation

for a number of layers is obtained by multiplication of the matrices

for the single layers.

The usage of the derived formulas is analogous to that for Cartesian

coordinates [1], e.g., the system reduction in the spatial domain

because of the metallic conductors (strips) is identical. Formulas for

the power transfer necessary for the impedances are given in the

Appendix.

III. EXTENSIONS

The summarized procedure for analysis can easily be extended for

finite metallization thickness, two-dimensional discretization, lossy

material, or higher order difference operator approximation. As shown

in Section II, the discretization in azimuthaf direction does not

differ from the discretization in Cm-tesian coordinates. Therefore

all what is known for the nonequidistant discretization in Cartesian

coordinates [16] can be used here in the same way. The higher

order approximation derived in [15] can be used to improve the

convergence behavior. To take into account the finite metallization

thickness, the formalism given in [1] and [14] can be directly used. It

should be remembered that we have two different matrices YI ~ and

111~ instead of a single matfix ~1.
If the structure is not homogeneous in the z direction, then a

discretization for this coordinate is also necessary. The z-coordinate,

however, is a Cartesian coordinate, and therefore the discretization

in this direction is completely analogous to the procedures given in

[1], [12], and [6].

IV. CONCLUSION

With the general formulas presented here, the analysis of multilay-

ered cylindrical structures can be performed using the MoL. Because

the discretization procedure in principle was verified in [4] no special

numerical results are given.

APPENDIX

CALCULATION OF THE POWER TRANSFER

FOR THE CHARACTERISTIC IMPEDANCE

In waveguides allowing hybrid waves propagation, characteristic

impedances are defined by means of the power transfer ~ [1]. The

power transfer P is determined as the integral of the Poynting

vector over the waveguide cross section F. For propagation in the

z direction,

(Al)

The power transfer must be calculated separately for each layer

of the circular structure and then summed over all layers, For the

layer between pA and pB in Fig. 1 we obtain using the discretized

fields (approximating the integral with respect to ~ by means c,f the

rectangular or trapezoidal rule)

{Ih LB
Pd=Re —

k:&d ~A }
[tH;’Ep - tH;’E~] dt . (A.2)

Instead of using the field components in the spatial domain, the field

components in the transformed domain can be used to an advantage,

because, e.g.,

H;tEP = H;’T,~P = (T:’lly)”%, = ~:’~,. (A.3)

With

where ~ = ~P or ~ = HP and with the solutions of the following

integrals

‘B

H

tJj(t)

,A t.fv(t)Yv(t) ‘J~w’t)ld’= K a (A.5)

we obtain the final result for the first part of (A.2)

/

tB

‘H;fEpd’= Rl*Lk aR:l
(A.6)

tA

with (C = A or B)

gc = [av@(’c) + CvJ; (’c) – 2bJv(fc)b(tc)l~;2

92 = (–CJV~i(t.4)~k(tB) – CVh(fA)h(~B))P;2

+ ~v(&(~A)yv(~B) + L7v(tB)~i7(t.4) )13;2. (A.7)

The subscript v must be marked with a subscript e. A COmeSPOIIld@

result is also obtained for the second term in (A.2), but v must then

be marked with a subscript h.
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Magnetic Frequency-’Ilmable Millimeter-Wave

Filter Design Using Metallic Thin Films

Hoton How, Ta-Ming Fang, and Carmine Vittoria

Abstract— Frequency tunable millimeter wave filters are considered
to be fabricated using metallic ferromagnetic thin films. Whereas con-

ventional filters which include insulating ferrite materials utilize tbe
phenomenon of ferromagnetic resonance (FMR), our design incorporates

the phenomenon of ferromagnetic anti-resonance (FMAR). Our calcu-
lations indicate that in comparing the characteristics of the two types

of filters the filter utilizing magnetic metal films is superior in terms of
insertion loss and integrabitity with other planar millimeter wave devices.
Design of band-pass filter can be reatized in which the transmission
frequency occurs at FMAR frequency with a frequency bandwidth equal

to the FMAR linewidth.

I. INTRODUCTION

In the past microwave/millimeter wave filters were inevitably

designed in terms of varying the capacitive or inductive loading of the

resonators. For the former case varactors are commonly used in which

the frequency tuning range of the filter can be only a few percent of

the transmission frequency [1]. For the latter case ferrite insulators

are used which are usually in the form of polished spheres of single

crystal yttrium iron garnet (YIG). The ferrite spheres are biased

by a magnetic field and the transmission frequency is designed at

ferromagnetic resonance (FMR) [2]. Both designs involving varactors

and ferrite insulators are limited to relatively low-power applications.

We consider in this paper for the first time a new design in which

metallic magnetic films are used instead of ferrites in order to im-

prove the band-pass characteristics. Whereas conventional insulating

ferrite materials utilize the phenomenon of ferromagnetic resonance

(FMR), the use of magnetic metal films utilizes the phenomenon of

ferromagnetic anti-resonance (FMAR). Normally metals more than
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a few p thick are opaque to microwave radiation. However, it was

predicted by Kaganov [3] (1959) and discovered by Heinnch and

Meshcheryakov [4] (1969) that a ferromagnetic metal becomes rela-

tively transparent to microwave radiation over a limit range of applied

magnetic fields near the field strength corresponding to FMAR. At

FMAR the effective permeability of the metal film is very small

and, hence, the resultant microwave skin depth becomes anomalously

large. Additional work on this subject maybe found in [5]-[7].

Our filter design involves the fabrication of a composite microstrip

line in which a thin magnetic metal film is inserted in the substrate

layer of the microstnp line, which is connected to and lies parallel

to the ground plane. The characteristic impedance of the microstrip

line in the absence of the metal film is 50 Q. A dc magnetic field

is applied normal to the film plane. When the magnetic film is

biased away from FMAR the magnetic metal film interferes strongly

with wave propagation. The characteristic impedance of the line

appears to be much smaller than 500. The signal is reflected when

biased off-FMAR due to impedance mismatch. However, for biasing

field at FMAR the skin depth within the magnetic metal becomes

substantially greater than the film thickness. Consequently, at FMAR

the impedance of the line changes to 50 L? which matches the

input signal feeder line. The band-pass transmission bandwidth is

consequently the FMAR linewidth [5]–[7]. We have calculated the

transmission properties of the filter based on the use of permalloy thin

films. The calculations show the following characteristics: insertion

loss is less than 0.2 dB, isolation larger than 10 dB, and frequency

tunability extends from 30 to 120 GHz.

FMAR occurs for frequencies somewhat above FMR. At FMAR

the rf magnetic moment, m, is out-of-phase with the driving field,

h, so that [5]-[7]

b=h+47rm=o. (1)

For this condition the dynamic permeability, V, is very small (limited

by the value of magnetic relaxation) and the effective skin depth is

large, being limited only by the magnetic damping. The condition of

(1) combined with the magnetic equation of motion

&f=yiMx H (2)

where

H= Ho+h

readily leads to the condition for FMAR

w~y = BO = Hi. + 4n1M, (3)

where H,. is the static internal magnetic field, -y the gyromagnetic

ratio, and 4nAf. the saturation magnetization.

At FMAR the metaf film is characterized by a small permeability

value which results in very large skin depth when the metal film is

exposed to rf excitations [5]–[7]. Therefore, the metal film appears to

be transparent to the microwave millimeter wave transmission when

it is biased at FMAR. The frequency bandwidth of transmission is

roughly equal to the Iinewidth at FMAR [3]

AHFMAR = 0.3(47rIbf, )[(6./d)(AH/4Ws )3’2]1’2 (4)

where d is the thickness of the metal film, 8. the classical skin depth

6, = c/(27ruw)l@

c the speed of light in vacuum, a the conductivity of the metal film,

and AH is the linewidth at FMR given by

AH = 2( A/7J)(W/7iV15). (5)

Here J denotes the Landau–Lifshitz damping parameter [6].
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